DESIGN OF ELECTRICAL MODELS FOR SOLVING THE
HYPERBOLIC HEAT EQUATION

M. P. Kuz'min UDC 681,332/333

The hyperbolic equation of heat conduction is solved on electrical models with lumped-
parameter elements, Fundamental relations are established for the design of such models
and the design procedure is described,

In the case of transient thermal processes occurring at high rates, the heat transmission is described
more accurately by the hyperbolic than by the parabolic heat equation, The reason is that heat travels not
infinitely fast, rather at some very high but finite velocity. Taking into account a finite velocity of heat
propagation leads to the hyperbolic heat equation and it is absolutely necessary in an analysis of transient
processes occurring at a high rate {1},

A solution of the nonlinear hyperbolic equation of heat transmission presents certain difficulties not
easily overcome, especially in the case of complex and variable constraints, The use of electrical models
with lumped-parameter elements may be helpful for the solution of this hyperbolic heat equation.

Most attractive are electrical models designed with resistances, capacitances, and inductances,
since they simulate the process continuously in time and, therefore, are high-speed devices [2].

We will consider the asymmetric heating (cooling) of an anisotropic solid which interacts with the
ambient medium under boundary conditions of the third kind. The transient heat transmission can be de-
scribed mathematically as follows:
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Following the theory of generalized variables, we transform the variables here (for the given process):
T=T8 x=xX; y=uyY: z=2Z; 1="14
e=oC v= W A= leAx; }"y = "'lyAy; ;“z = MA,,
where Ty, X, V1, Zi» Tys Cfs Yi» Mxs My» Mz are respectively the reference values of the temperature,
the space coordinates, time, the specific heat, the density, and the thermal conductivities along the co-
ordinate axes, while 9,X,Y, Z,t,C, I', Ax, Ay, Ay are the relative temperature, coordinates, time, speci-
fic heat, density, and thermal conductivities along the coordinate axes,
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Fig. 1. Diagram of cell in Fig. 2, Schematic diagré.m of an electrical .
electric space model. _ model,

As a result, we obtain a mathematical model of the thermal process*
0 - 0% 0 00 a 00 G a0
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¢ (at 4 ) 2ax( ax)+ Aaay( ”ay)“L ‘az( az)
0=4, (2
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o a0
wherem=6,7,8,9,10,11, and I=X, Y, Z.

Here coefficients Ay —Ay, play the role of generalized parameters and they are defined as follows:
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For an isotropic medium and constant thermophysical properties ainéai' formulation of the problem),
the mathematical model of the thermal process is '
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* By a. mathematical model is meant a complete mathematical description of the process (including also
the unigueness conditions) in generalized variables.
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The electrical transient process in a three-dimensional electrical model made up to resistances r,
capacitances ce, and inductances lge (Fig. 1) connected in series along the coordinate axes is mathe-
matically described by the following system of equations*

ce( o Joe Pu ) =div (—l—— gradu) ,

aT re ‘ a‘[: i
¢ U=ty (6)
ou r;
kS B —u) =0,
di, + R, ta—4

Following the theory of generalized variables and the analogy with the thermal process, through linear
transformations we replace the process variables in system (6) by their generalized values,

As a result, we have a mathematical model of the electrical process
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where Ie = Xe, Ye. Ze.

The generalized parameters By —By; of the electrical process are defined as follows:
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The reference value rye can be determined from the relation
1 1 1 i
Lol (L) (9)
he 3 \ri iy 1z

For an electrical model with constant parameters (resistances, capacitances, inductances), the mathemati-
cal model of the electrical process is

au . Loe U . U ey L U
CR B = B - B .
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* Additional resistances Ry are hooked on at the model boundaries,
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Since the mathematical models of the transient thermal process (Egs, (2), (4)) and of the transient
electrical process (Egs. (7), (10)) both have the same structure, hence it is feasible to simulate on the
basis of direct analogy.

Mathematical simulation requires also a sufficient degree of congruence between the mathematiéal
model of the original and of the model, Inasmuch as the structures of both mathematical models are the
same, it is necessary for simulation that the generalized parameters be respectively identical, i.e,,

A =B, A,=B, A;=B; ...;. Ay=B8B. (12)

Equalities (12) are essential for désigning electrical models on the basis of direct analogy, because
they establish the quantitative relations between the electrical and the thermal process parameters.

Inserting relations (3), (5) and (8), (11) into equalities (12), we obtain the fundamental equations for
the design of electrical models. In the nonlinear problem for the case of an anisotropic medium these
equations become:
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A change to limiting values yields scale factors for the temperature (kr), the coordinates (k;), time
(kr), the thermal conductivity (kj), and the capacitance (k¢):
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From the system of design equations one can obtain criterial numbers for the heat transmission
asymmetry [3] along the coordinate axes:

0, = al‘ :L&_; O-y,.___ aPT_.: RZT, 6. = G — RBT R (15)
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In the design of electrical models all thermal and structural parameters of the solid body must be
already known, Only the parameters of the electrical model are still to be determined, The ten equa-
tions (13) for the design of electrical models contain 15 unknowns:ryys Ny 'Nz:Ce» Dx» Dy, Dz, Ry, Rp,
Rgs Rt RpTs Ry, log» kr. Inorderto determine them, one must fix five parameters. One mustalsobear
in mind then that the scale factors for the temperature, the coordinates, the conductivity, and the capacity
are defined by relations (14). If ng, ny, ny, ce, and k, are given, for example, then first the resistances
of the model elements ryy, Iyy» TNz are found from relations (13) followed by the boundary-value resis-
tances RT', R, Rc» RpT, RpTs Ry, and inductance lge. A model was constructed with the parameters
thus found. In Fig, 1 is shown one cell of a three-dimensional electrical model., The circuit of the elec-
trical model is shown in Fig, 2. On the same diagram is also shown the electrical circuit of the houndary-

value resistances.

If the material is isotropic and its thermophysical properties can be assumed constant and equal to
their mean values over the operating temperature range, then the system of design equations becomes

2 2
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ar ktnx (7.,0151 Ce, <y ROy
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Equations (16) contain 13 unknown parameters of the electrical model: r, ce, ny, ny, nz, R7, RB, Rg,
RpT, BpT, RZT. loe, Kr. Inorder to determine them, one must fix three quantities, One must also bear
in mind that the fixed quantities should simultaneously include three which are rigidly coupled by one of the

equations in system (16), The appropriate design variant is selected on the basis of its assembly feasi-

bility.

The system of Eqgs, (13) or (16) is used for designing models as well as for calculating the steady~
state parameters during simulation. Operating experience with electrical models made up of resistances,
capacitances, and inductances has shown that they can be successfully used for the solution of practical
heat engineering problems,
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Subscripts

-

NOTATION

is the temperature;

is the specific heat;

is the density;

is the thermal conductivity;

is the thermal diffusivity;

is the heat transfer coefficient;

are the space coordinates in the medium;

are the coefficients playing the role of generalized parameters;
is the time;

is the relaxation time;

is the relative temperature;

are the relative coordinates;

is the relative time;

is the relative heat capacity;

is the relative density;

is the relative thermal conductivity;

is the cell capacitance of the electrical model;

is the cell resistance of the electrical model;

is the boundary resistance of the electrical model;

is the inductance of the electrical model;

is the relative voltage;

are the relative coordinates of the electrical model;
is the relative cell inductance of the electrical model;
is the relative cell resistance cf the electrical model;
are the relative cell resistances along the coordinate axes;
is the relative cell capacitance of the electrical model;
is the temperature scale;

is the time scale;

is the coordinate scale;

is the scale of thermal conductivity;

is the scale of specific heat;

is the number of cells in the electrical model;

is the linear dimension of the solid body;

is the criterion of heat transfer agsymmetry.

denotes the initial-state parameter value;

denotes the coordinates (x, ¥, z);

denotes the media interacting with the solid body;

denotes the electrical process or the parameters of the electrical model;
denotes the reference value.
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